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4901. Define new coordinate variables by

X =
√

3x − y,

Y = x +
√

3y.

The equation is then straightforward.

4902. Let A have coordinates (x, y) and let the angle of
projection be ϕ. Quoting the standard equation of
the trajectory,

y = x tan ϕ − gx2

2u2 (tan2 ϕ + 1).

For minimum launch speed, this equation, thought
of as a quadratic in tan ϕ, must have ∆ = 0. Use
this to show that

u2 = g
(

y +
√

y2 + x2
)

.

Then show that

tan ϕ = y

x
+

√( y

x

)2
+ 1.

Let the angle between #   „

OA and the vertical be 2θ:

cot 2θ = y

x
.

Sub in and simplify with double-angle formulae.

4903. The equations are symmetrical in y = x. This goes
a long way to simplify things. Sketch the curves
carefully, showing that there are no intersections
which do not lie on y = x. Then solve y = x4 −2x2

and y = x simultaneously.

4904. (a) For t0, think about the modelled reality. For k,
consider the effect on the graph of increasing
or decreasing k.

(b) For the model to be consistent, the total area
under the graph must equal the initial size of
the crowd, i.e. everyone must leave eventually.
Write this as an integral statement, and carry
it out. Use the substitution tan u =

√
k(t−t0).

(c) You can express P algebraically by looking at
an indefinite version of the integral in part (b).
However, you don’t have to. Instead, sketch by
thinking about the modelled reality: consider
the number of people present prior to and after
t = t0.

4905. The triple-angle identities, which can be proved
using compound- and double-angle identities, are

sin 3θ = 3 sin θ − 4 sin3 θ,

cos 3θ = 4 cos3 θ − 3 cos θ.

Put the lhs fractions over a common denominator.
Reverse engineering a little, the best is cos 2θ. Play
around with some identities until you get there.
Depending on which way you go, you might need
to consider a4 − b4 as a difference of two squares.

4906. Consider the boundary equation. For the lhs
to be zero, at least one of the expressions must
be zero. Each expression is a difference of two
squares, which gives a set of six lines. The required
regions form a chequerboard pattern.

4907. Since f(p) = 0, we know that f(x) has a factor of
(x−p). Take this out, writing f(x) = (x−p) f1(x).
Differentiate by the product rule to show that f1(x)
has a factor of (x − p). Continue in this fashion.

4908. Centre the unit circle at O and the second largest
circle at (2/5, 0). Find the centre of the circle of
radius 3/8 by considering the distances from (0, 0)
and (2/5, 0).

Call the centre of the third circle (p, q). Then set
up three simultaneous equations in the variables
p, q, r, using distances from the three centres.

4909. Sketch y = lhs, by considering the behaviour just
either side of each asymptote. You don’t need to
find sps; in fact, there aren’t any. Once you’ve got
a good picture, the result follows easily.

4910. (a) Set up an expression for the total distance from
the ring to A and B. Substitute the equation
of the ellipse in, and simplify to get 1.

(b) The velocity must be tangential to the ellipse.
Differentiate implicitly to find the gradient at
the point of release. Convert this to an angle,
taken in the usual sense of anticlockwise from
the horizontal A to B.

4911. Use the substitution u = ln x, and then parts.

4912. Expand binomially and equate coefficients. Then
eliminate one of the variables. You’ll reach a non-
analytically solvable equation. You know that
you’re looking for integer solutions, so you can use
a sign change method. Alternatively, use N-R or
fixed-point iteration.

4913. Set up:

R

P

Q
a

Find the equation of line PR. Use the fact that
tan 67.5° = 1 +

√
2. Find the coordinates of Q in

terms of a, and then the area of the triangle in
terms of a. Optimise this.
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4914. There is a result you can quote here. Otherwise,
sketch the scenario and set up a generic circle with
radius r. Find the value of r such that the circle
and the curve have the same second derivative at
(0, 1).

4915. At the point of self-intersection,

ln s cos s = ln t cos t,

− ln s sin s = − ln t sin t.

Solve these equations simultaneously. You’ll need
to use the fact that s ̸= t, which yields a ... + π.
When you sub back in, use cos(θ + π) ≡ − cos θ.
You should end up with a quadratic in s (or t).

4916. The second derivative h′′(x) is a quadratic. Since
it has roots at x = a and x = b, it is symmetrical
around the midpoint of the two. So, the following
holds for all x ∈ R:

h′′
(

a + b

2 − x

)
= h′′

(
a + b

2 + x

)
.

Integrate with respect to x to find a relationship
involving h′. To find the constant of integration,
substitute

x = b − a

2 .

Repeat to find a relationship involving h.

4917. Find the equation of a generic tangent at x = p.
Find the x intercept of this tangent, in terms of
p. Then set up an equation in p, using the fact
that tangents from a point to a circle are the same
length. Solve numerically, proving (determine not
find) with error bounds.

4918. The average value A is given by

A = 1
2π

∫ θ=2π

θ=0
cos2 θ sin2 θ dθ.

Use two double-angle formulae.

4919. (a) Actively drag out a factor of 1/n2, even though
it isn’t there. Then use a log rule.

(b) Integrate by inspection, using the result given
in the question.

4920. Find the equation of a generic normal at x = p.
Solve for re-intersections with the curve, noting
that x = p must be a root of the equation you set
up. Find the other x value, and the y value to go
with it. Use calculus to show that this y value is
always at least 2.

4921. Multiply top and bottom by
(

1 − 2 1
4 + 2 1

2 − 2 3
4

)
.

4922. Consider a pair of opposite triangles, i.e. those
from parallel edges of the 2n-gon. Show that the
total area of two opposite triangles is independent
of the position of the central point.

4923. You can do this by brute force. But there is an
easier method. Find the probability that there is
at least one heart in the hand. Then calculate the
expectation of the presence of at least one heart in
the hand, with 1 as presence and 0 as absence. By
symmetry, the same is true for all suits.

4924. Put everything onto the lhs and factorise.

4925. This is easiest combinatorially. There are 20! ways
in which the numbers can be placed. First, work
out the number V of vertices. Then, for successful
outcomes, multiply V by the number of ways in
which {1, 2, 3, 4, 5} can be placed around a vertex,
and by the number of ways in which the rest can
be placed elsewhere.

Alternative Method

Use a conditioning approach, placing 1 without
loss of generality. This does require some care:
there are two cases for the placement of 2.

4926. Parts (a), (b), (c) and (e) are simple enough. Part
(d) is the complicated bit.
In (d), substitute for y to produce a quadratic in
x. But don’t multiply it out, because it is, in fact,
a quadratic in x − d. So, let X = x − d, and solve
for X. This will keep the algebra under control.
Simplify as far as possible at every stage. You
should be able to check you’re on the right track
when X = 0 (i.e. x = d) appears as a root.

4927. (a) Set up the parametric integration formula.
You don’t need to worry about the signing of
the area here, it will come out in the wash.

(b) Integrate the terms separately, using parts.
The tabular integration method is easiest for
the middle term.

4928. Set up a diagram with the line of symmetry of
the isosceles triangle horizontal, so that the force
of magnitude B acts horizontally. The upper half
is a right-angled triangle. Call its angles 2α and
90° − 2α.
Resolve along the angle bisector at both vertices,
and use sin 2α ≡ 2 sin α cos α to eliminate α from
your equations.

4929. Factors must (in almost all cases) appear in pairs,
in the form p × q = n for p ̸= q. For example, 28
is 1 × 28, 2 × 14 and 4 × 7. Start by considering
the cases in which n is or is not a perfect square.
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4930. Find the parametric equations of the ellipse. Use
these to express A△ in terms of a parameter t.
Optimise A△ with respect to t.

4931. Use the substitution q = x + y, p = x − y.

4932. Use partial fractions, and write the sum longhand.

4933. Work out the angles of inclination of the other two
masses, in the same sense as θ. Then consider
equilibrium along the string. The tensions in the
strings cancel; only the tangential components of
the weight have an effect. If the three angles are
measured in the same sense (as θ in the diagram),
these components will appear symmetrically. Use
identities to simplify and solve.

4934. The boundary equations are two circles. Sketch
these, noting the point of tangency. Then consider
the signs of the factors, depending on whether a
point is inside or outside the circles.

4935. Quoting a standard result, the trajectory before
the first bounce is

y = −gx2

2u2 + c.

Work out where the first bounce is. The second
trajectory is a copy of the first, translated by twice
this amount. Multiply by n to find the translation
after n bounces. Replace x by (x − ...) in the first
trajectory, and simplify.

4936. (a) Let x = 2t.
(b) Take out a factor of sec2 x and then use the

second Pythagorean trig identity. Simplify and
then integrate by inspection.

4937. The form given is a prime factorisation. Hence,
you can list the factors explicitly, and consider
their sum as that of two geometric series.

4938. Solve for intersections of xy (x + y) = 16 and the
boundary equation x2 + y2 = 8. Show that the
curve is tangent to the circle at a single point.
Hence, show that the curve is on or outside the
circle.

4939. Set up the parametric integration formula. Use
some identities to simplify. Most of the terms
won’t contribute to the value of the integral. You
don’t have to worry about positives and negatives
in the signed area. In such a rotation they won’t
cancel out, giving either the total area or its neg-
ative.

4940. Let z = x2. Show, using calculus to consider sps,
that the resulting quintic in z has exactly one root,
which is positive.

4941. Set up the equation for intersections. For two
distinct points of tangency, this equation must
have two double roots. Write an identity with
(x − a)2(x − b)2, and equate coefficients.

4942. (a) Consider the range of sine.

(b) Show that, as x → 0+, values keep appearing
for which sin(ln x) = 1.

(c) Explain why the argument in (b) applies to
any other potential limit.

4943. Draw a force diagram for the ladder containing
four forces. Use circle geometry to find the angle
of inclination of reaction and friction at the base.
Set up three equations: horizontal, vertical and
moments around the base. Find one reaction with
the moments equation, and eliminate the others
using horizontal and vertical equilibrium. Then
manipulate the algebra using identities.

4944. Differentiate the substitution with respect to x.
With some manipulation, you can separate the
variables. Having got x and dx on one side and
t and dt on the other, you can proceed.

4945. Prove this by construction, by finding a specific
subset of S in which you can list infinitely many
elements. There are all sorts of ways in which you
can do this. One is as follows.

Consider the primary solution set of sin θ > 1/2,
which is (π/6, 5π/6). This contains the interval [1, 2].
So, if you can show that there are infinitely many
rational squares in the set [1, 2], then you have
shown that S has infinitely many elements.

4946. Assume, for a contradiction, that every pair of
points 1 unit apart are coloured differently. Wlog,
colour a point X red. Show that all points which
are

√
3 away from X must also be red. Use this to

find a contradiction.

4947. Two are true, one is false.

4948. (a) The assumptions concern

i. friction and the mass of the string.
ii. the mass of the movable pulley.

(b) Take the masses as running 4, 2, 3 rightwards.
Call the rightwards acceleration of the upper
string over its pulley a1 and also rightwards
acceleration of the lower string over its pulley
a2. Then set up three force diagrams for the
masses, writing the accelerations in terms of
a1 and a2. You should get three equations of
motion in T , a1 and a2.
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4949. On a Venn diagram of the possibility space, there
are 4C2 = 6 regions in which two events occur,
4C1 = 4 regions in which one event occurs, and
4C0 = 1 region in which no events occur. So, there
are 11 relevant probabilities.

(a) Consider the case in which all 11 probabilities
are zero, except

P(A ∩ B) = P(C ∩ D) = k
4 ,

P(A′ ∩ B′ ∩ C ′ ∩ D′) = 1 − k
2 .

(b) Set four of the two-way intersections, namely
P(A ∩ B), P(B ∩ C), P(C ∩ D) and P(D ∩ A)
to k

4 , and set P(A′ ∩ B′ ∩ C ′ ∩ D′) to 1 − k.

4950. Firstly, prove the half-angle formula

sin2 1
2 θ ≡ 1 −

√
1 − sin2 θ

2 .

To do this, square sin θ ≡ 2 sin 1
2 θ cos 1

2 θ. Then let
s = sin 1

2 θ. Use the first Pythagorean identity and
the quadratic formula to solve for s2.
Then substitute in 1

2 arcsin x.

4951. At height z = k, the (x, y) cross-section is

1

1

1 − k x

y

k

Find the (x, y) area Ak of the trapezium, and then
integrate Ak between k = 0 and k = 1.

4952. Find the time at which each particle sparkles, and
thereby the coordinates at this point in terms of t.
Consider these as a pair of parametric equations.
Find the Cartesian equation.

4953. The denominator is the number of outcomes in the
possibility space. So, you need to show that the
numerator is the number of successful ones.
Classify the successes by the total length of the line
involved, including any blank grid squares outside
the counters.

4954. Define new coordinate variables:

p = 1√
2 (y + x),

q = 1√
2 (y − x).

The factors of 1√
2 are necessary in order not to

stretch the graph.

4955. (a) Draw a triangle of forces for particle A, using
some circle geometry to write all of the angles
in terms of θ. Use the sine rule, expanding
with a compound-angle formula.

(b) Square both sides of the result from part
(a) and use identities to simplify. Solve a
quadratic in sin θ.

4956. (a) Deal with the cases in which sec x + tan x is
non-negative and negative separately. This
will allow you to get rid of the mod sign.

(b) Let u = sec x. Enact parts, and then use the
second Pythagorean trig identity to split what
results. You should be able to rearrange to
make 2I the subject. Then you can use the
result from part (a).

4957. Assume that 2k + 1 is prime, and that k can be
factorised as k = ab for a, b > 1. Find an explicit
factorisation of 2ab +1 which relies on a being odd,
thus proving that a must be even.

4958. Reflection in z = 1 is equivalent to reflection in
z = 0 and then translation by vector 2k. Find the
equation after this. Then replace x by x − π, y by
y − 2π and z by z + 2. Simplify using identities.

4959. (a) i. Evaluate a definite integral with respect to
a dummy variable such as p, keeping x to
represent the limits of the integral −x to x.

ii. It’s clearer if you call the length of the ditch
l, even though l will then drop out of the
algebra.

(b) Write d
dt (x3) = 3x2 dx

dt . Solve the resulting de
in variables x and t to show that

1
2 x2 + x + ln |1 − x| = d − t.

In the long term, the rhs tends to −∞. Work
out how the rhs can possibly equal this, and
make an approximation.

4960. She will see the same effect. Prove it by setting up
the equation f ′′

1(x) − f ′′
2(x) = 0, which must hold

for all x. Integrate it twice with respect to x.

4961. For a combinatorial approach, place A wlog. Then
consider the outcomes as a list of the 5! orders of
the other five letters. Success requires exactly two
of D, E, F to be next to one another. For failure,
all three are together or all three are separated.
Count up the outcomes.

4962. The shortest distance must lie along a normal to
the plane which passes through the origin. This is
the line x = y = z.
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4963. Use the fact that the golden ratio ϕ is a root of the
equation x2 − x − 1 = 0. This allows you to write
ϕ2 = ϕ + 1, without the need to expand surds.

4964. As suggested, the rhs is the number of ways of
choosing a committee of (r+1) people from a group
of (n + 1).
Label the people 1, ..., n+1. Then classify the ways
of picking the committee by the least label picked.

4965. Wlog, let r = 1. Call the downwards acceleration
of the upper core a. Show that each lower core
starts accelerating horizontally at

√
3a. Resolve

vertically for the upper core and horizontally for
one of the lower cores. Solve simultaneously.

4966. Write e.g. sin x = sin
(
2 · x

2
)

and expand with a
double-angle formula. The key is then to put each
expression over a denominator of sec2 x

2 .

4967. (a) The parabola that fits most closely matches
the values of f(k), f ′(k) and f ′′(k).

(b) Find the derivatives of the given function, and
substitute into the results from part (a).

(c) Show that the approximating parabola is

y = −2x2 + 5x − ln 2 − 3
2 .

Equate to zero and solve with the quadratic
formula.

4968. Rewrite the problem in coordinates X = x+y and
Y = x − y.

4969. Set up Nii along the rope. Tensions are internal
and cancel; only the tangential components of the
weight remain. So, set up a definite integral to
find the resultant force acting tangentially on the
rope.
You might want to consider an approximation with
a small section subtending δθ at the centre of the
cylinder in order to set up a finite sum first. The
relevant definite integral is the infinitesimal limit
of this sum.

4970. The key here is: in the equation for intersections
between curve and tangent line, there must be a
double root at the point of tangency. If you take
a squared factor out of a cubic, you must leave
a linear factor behind. Express this algebraically.
Multiply out and, by considering the coefficient of
x2, explain how you know that b ∈ Z.

4971. When the distance from the origin is greatest or
least, the tangent vector is perpendicular to the
position vector. Write this algebraically, and sub
it into the equation of the ellipse.

4972. Assume, for a contradiction, that
1 2p − 1 is prime,
2 p is not prime, and can be written as p = ab,

where a and b are integers greater than 1.
This gives 2p − 1 = 2ab − 1. The task is to find an
explicit factor of 2ab − 1.

4973. The key is the relationship between asymptotes
and factors. Establish that the asymptote at x = 0
forces the lhs to have a factor of y. Repeat this,
establishing factors from the other asymptotes.
Scale the equation to put it tangent to the circle.

4974. Show that one of the centres must lie on the line
of symmetry, and the the other two off it. Call the
radii R, r, r. Then find the total area covered in
terms of r. Show that this has only one sp, which
is a minimum. Interpret this as needing analysis
of the boundary cases R = 1/2 and r = 1/4. Find
the area in each case.

4975. Given a particular orientation θ, work out the
probability that the needle will end up crossing a
crack. Then integrate this probability from θ = 0
to θ = π/2, dividing by the width of the interval.

4976. (a) Factorise fully. One double tangent passes
through the origin; the other two are rotations
of one another around the origin.

(b) For the double tangent through O, set up the
equation for intersections. It must have two
double roots apart from x = 0. Set up an
identity and equate coefficients.
For the other tangents, it’s the same, but the
algebra is harder. The relevant identity is

x5 − 20x3 + (64 − m)x − c

≡ (x + p)2(x + q)2(x + r).

Equate coefficients of x4, x3, x2 to get three
equations in p, q, r. Then use the substitution
a = p + q, b = 2pq to solve.

4977. Unwrap the cube as a flat net, labelling
the vertices (and their repetitions in the net)
A, B, C, D, E, F, G, H. Map the path on the net.

4978. Use definite integration. Determine the area Az of
the triangular cross-section of the region at height
z. Then integrate this with respect to z, between
the appropriate limits.

4979. Factorise fully and sketch the boundary equations.
Notice that no factor is repeated. This implies
that crossing over any one boundary equation must
change the sign of the lhs of the inequality. This
will allow you, having tested e.g. the point (1, 0),
to shade all of the relevant regions.
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4980. A combinatorial approach is easier. There are four
ways to colour the central region. Consider the
number of ways of colouring the outside regions,
using the classification

1 Type abac,
2 Type abab.

4981. Consider the expression cos(θ − ϕ) − cos(θ + ϕ).

4982. Assume, for a contradiction, limiting friction in
both components. Show that this results in the
skier slowing down. Then, use a triangle of forces
to work out which of the components of the friction
must be maximal in the limiting case. Use another
triangle of forces to get the required relationship.

4983. Show first that the central hexagon can be coloured
in 66 different ways. Then consider, for each of
those, the colouring of the three outer triangles.

4984. Use contradiction. This is a generalisation of the
proof of the irrationality of

√
2. The trick is to

focus on individual prime factors of k.

4985. Sketch the path P of the centre of the circle. The
task is to show that every point within the circle
C : x2+y2 = 4 lies within a distance of 1 from path
P . This is a question of analysing various cases,
defining those cases by their relationship with the
path P . As ever, a sketch is useful. Indeed, an
accurate plot might even be warranted.

4986. The magnitude of applied couple must be equal to
the magnitude of the couple formed by the weight
and the reaction. Set up a force diagram without
the applied couple. This is easiest if you use axes
in which the prism is not rotated, but ground and
forces are. Then you can formulate things using
the original coordinate system. Find the equation
of the normal at P , and therefore work out the
moment of the weight around P .

4987. Establish that the solution set must have both of
the axes as lines of symmetry. Then consider the
positive quadrant. Sketch the boundary equation
in that quadrant, before mirroring them elsewhere.
Finally, check a point or more to work out which
regions satisfy the inequality.

4988. Write down the boundary equation and factorise.
The task is then a sketch. This is easier than you
might think, because the magnitude of the indices
means that the curve can be approximated by line
segments: all points must lie very close to one of
x = 0, y = 0, x = ±1, y = ±1 or y = ±x.
Shade the successful region, approximating it with
line segments. The area can then be easily found.

4989. Consider a cubic

y = ax3 + bx2 + cx + d.

Completing the cube allows you to eliminate the
x2 term. This is the key step. The rest consists of
keeping track of the relevant transformations. Feel
free to introduce new constants as and when you
need. You don’t need to find explicit coefficients
for the new graphs as you transform them, merely
to keep track of what is zero or not, then, at the
end, what is positive or negative.

4990. Use the angle in a semicircle theorem to show that
R = 1

2 c. Then, to find r, set up the following
diagram and use the given identity:

r
1
2 θ

1
2 θ

a − r r

b
c

4991. (a) Show that
1
u

du = sec θ dθ.

(b) Use the substitution to write the integral as

1
2 I =

∫
sec3 θ dθ.

Then use integration by parts, with u = sec θ.
Using the second Pythagorean trig identity,
you can convert the integral so as to use the
result from (a).

4992. There are various ways of doing this. I imagine
it can be done algebraically. I suggest a graphical
approach. If you can sketch the region defined by
the inequality, then the problem is mostly done.
To sketch, factorise the boundary equation fully,
noting its rotational symmetry around the origin.
You might use variables 1√

2 (x + y) and 1√
2 (x − y).

Having sketched, show that there is exactly one
circle centred at the origin which remains fully
within the region defined by the inequality. Find
its radius by considering the self-intersections of
the boundary equation.

Nota Bene

This problem offers almost no way of visualising
the solution before you have the solution. In that
respect it’s a tough one. But that’s the power of
visual approaches to algebraic problems. Like the
ancient Greeks, I err on the side of geometry!
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4993. Consider the set

S = {ax + by : x, y ∈ Z and ax + by > 0}.

S is a set of positive integers. So, it must have a
smallest element s = ap + bq. You need to show
that s = 1. Do this by showing that s is a divisor
of both a and, by the same argument, b.

4994. Consider the pair of spheres as a single object. It
has three forces acting on it: two reactions acting
radially, and the combined weight. Both reactions
pass through the centre of the bowl. Hence, so
must the weight, meaning that the centre of mass
of the combined object must lie directly below O,
on the intersection of the vertical and PQ. This
reduces the problem to a geometric one:

1 k

αθ

Find tan α in terms of k, then use a compound-
angle formula to expand tan θ = tan(30° − α).

4995. By sketching carefully and considering symmetry,
find the equation y = mx of the line which passes
through the origin and the point of intersection.
Calculate the area by definite integration, and then
use half/double-angle formulae.

4996. This question is about visualising the possibility
space. With the right visualisation, the problem
requires very little in the way of working. Start
with n = 1, 2, 3, ..., all of which have possibility
space which can be visualised in 3d space. Then
extend the argument into higher dimensions.
The final result is simple and, in some senses, could
be written down with a “clearly”. The difficulty is
finding a way to express the argument rigorously.
There are lots of ways to do this, of which iterated
integration is one.

4997. Split the quadrilateral into two triangles:

A

B

p
C

q

D

r

s

Calculate the areas of these two using 1
2 ab sin C,

then simplify using trig identities. Write the whole
thing in terms of side lengths and the cosine of a
single interior angle.

Then, use the cosine rule on both triangles and
eliminate the length of the chord. This will allow
you to express the cosine in your earlier formula in
terms of side lengths. From this point, you have
the area in terms of the side lengths, so the rest is
an exercise in algebraic manipulation.

4998. As with many problems involving Cartesian axes
or functions, the first task is to sketch the scenario
carefully, so as to get a clear mental image of the
relevant mathematics. In this case, such sketching
requires a change of coordinate system. Express
the problem in terms of the variables

X = x + y,

Y = x − y.

These run along axes aligned at 45° to x and y.

Once you’ve done this, you’re looking to prove that
the area in (X, Y ) space tends to 4 (there’s a scale
factor associated with the change of variables). To
do this, divide and conquer:

1 The total area in the first, second and fourth
quadrants can be analysed using integration.
Show that it tends to 3.

2 The area in the third quadrant x, y < 0 can
be analysed by comparing it to the area of a
kite. Show that it tends to 1.

4999. There are a number of ways in which this can be
proved, including brute force rearrangement. My
preferred method, which I think comes closest to
showing the why of the question, is to prove that
changing the position of (a, b) doesn’t change the
total shaded area. Combined with the fact that
the result is trivially true when (a, b) is the centre
of the circle, this gives the result.

So, place (a, b) at an arbitrary point, and show
that translating (a, b) in the x direction maintains
area. For visualisation, consider a small change in
position to (a + δx, b). You then need to work in
the limit as δx → 0. In the limit, area is generated
and destroyed at the straight-edge boundaries of
the shaded regions. The task is to count up the
contributions.

Show that the total contribution of the vertical
chord is proportional to b. You can then generalise
this argument to the other chords, representing all
of the contributions as lengths. Once you’ve got
the relevant lengths, it is elementary geometry to
show that they sum to zero.
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5000. You need to prove that the shortest path between
each pair of curves is the same length.
This is best approached by careful sketching, so
that you have a very clear picture of where you’re
trying to get. Particularly, find out everything you
can behaviour-wise about the quartic. Then, work
out 1 the distance between the circle and the
parabola, using a generic normal to the curve at
x = a, and 2 the distance between the parabola
and the quartic.
Then, 3 to find the shortest path from the circle
to the quartic isn’t too difficult, by guessing from a
sketch or using numerical methods. The last part,
and the hardest, is proving that the distance you
have found is the shortest one.
You might want to consider a “middleman”, i.e.
an analysable curve which you can use to compare
the circle and the quartic.

End of Volume V


